
1
2
3
4
5
6
7
8
9
10 top

bottom

Microprocessors (0630371)
Fall 2010/2011 – Lecture Notes # 15

Stack Operations

Objectives of the Lecture
� Runtime Stack
� PUSH Operation
� POP Operation
� Initializing the Stack
� PUSH and POP Instructions
� Stack Applications ------Using PUSH and POP
� Related Instructions
� Example: Reversing a String

Runtime Stack

� Imagine a stack of plates . . .
o plates are only added to the top
o plates are only removed from the top
o LIFO structure (last-in first-out)

� Managed by the CPU, using two registers

o SS (stack segment)
o ESP (stack pointer) -------(SP in Real-address mode)

PUSH Operation

0 0 0 0 0 0 0 6 E S P0 0 0 0 1 0 0 0

O f f s e t

0 0 0 0 0 F F 8

0 0 0 0 0 F F 4

0 0 0 0 0 F F 0

0 0 0 0 0 F F C

00000006 00000006

ES P

00001000

00000FFC

00000FF8

00000FF4

00000FF0

000000A 5

ES P00001000

BE FO RE

00000FFC

00000FF8

00000FF4

00000FF0

A FTE R

0 0 0 0 0 0 0 6

E S P

0 0 0 0 1 0 0 0

O f f s e t

0 0 0 0 0 F F C

0 0 0 0 0 F F 8

0 0 0 0 0 F F 4

0 0 0 0 0 F F 0

0 0 0 0 0 0 A 5

0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 2

� A 32-bit push operation decrements the stack pointer by 4 and copies a value into the location
pointed to by the stack pointer.

� Same stack after pushing two more integers:

� The stack grows downward. The area below ESP is always available (unless the stack has

overflowed).

POP Operation
� Copies value at stack [ESP] into a register or variable.
� Adds n to ESP, where n is either 2 or 4.

o value of n depends on the attribute of the operand receiving the data

BEFORE AFTER

00000006

000000A5

00000001

00000002 ESP

00000006

000000A5

00000001 ESP

00001000

00000FFC

00000FF8

00000FF4

00000FF0

00001000

00000FFC

00000FF8

00000FF4

00000FF0

� When the stack area is initialized, load both the stack segment (SS) register and the stack
pointer (SP) register.
� Figure shows how this value causes data to be pushed onto the top of the stack segment with a

PUSH CX instruction.
� Al l segments are cyclic in nature

o the top location of a segment is contiguous
� The PUSH CX instruction, sh

shown just before execution, to illustrate that the stack bottom is contiguous to the top.

PUSH and POP Instructions

PUSH syntax:
PUSH reg/m16
PUSH reg/m32
PUSH imm32

� Always transfers 2 bytes of data to the stack;
o 80386 and above transfer 2 or 4 bytes

POP syntax:

POP reg/m16
POP reg/m32

� Performs the inverse operation of PUSH.
� POP removes data from the stack and places it in a target 16

16-bit memory location.
o not available as an immediate POP

Initializing the Stack

When the stack area is initialized, load both the stack segment (SS) register and the stack

shows how this value causes data to be pushed onto the top of the stack segment with a

l segments are cyclic in nature.
the top location of a segment is contiguous with the bottom location of the segment

instruction, showing the cyclical nature of the stack segment. This instruction is
shown just before execution, to illustrate that the stack bottom is contiguous to the top.

PUSH and POP Instructions

Always transfers 2 bytes of data to the stack;
80386 and above transfer 2 or 4 bytes

Performs the inverse operation of PUSH.
POP removes data from the stack and places it in a target 16-bit register, segment registe

t available as an immediate POP

When the stack area is initialized, load both the stack segment (SS) register and the stack

shows how this value causes data to be pushed onto the top of the stack segment with a

with the bottom location of the segment
owing the cyclical nature of the stack segment. This instruction is

shown just before execution, to illustrate that the stack bottom is contiguous to the top.

bit register, segment register, or a

� Example:
POP BX

Stack Applications
� Saves procedure linking information on the stack
� Local Variables for Calling Procedure
� Parameters Passed to Called Procedure
� Storing the contents of the registers including the flag register.

Example1: Save and restore registers when they contain important values.
instructions occur in the opposite order.

push esi
push ecx
push ebx
mov esi,OFFSET dwordVal
mov ecx,LENGTHOF dwordVal
mov ebx,TYPE dwordVal
call DumpMem
pop ebx
pop ecx
pop esi

Example 2: Nested Loop: Remember the nested loop we created
push the outer loop counter before entering the inner loop:

 mov ecx,100
L1: ; begin the outer loop
 push ecx
 mov ecx,20
L2: ; begin the inner loop
 ;
 ;
 loop L2
 pop ecx
 loop L1

Stack Applications ---- Using PUSH and POP
Saves procedure linking information on the stack
Local Variables for Calling Procedure.
Parameters Passed to Called Procedure
Storing the contents of the registers including the flag register.

Save and restore registers when they contain important values.
ns occur in the opposite order.

 ; push registers

mov esi,OFFSET dwordVal ; display some memory
mov ecx,LENGTHOF dwordVal
mov ebx,TYPE dwordVal

 ; restore registers

Remember the nested loop we created in previous lecture
push the outer loop counter before entering the inner loop:

mov ecx,100 ; set outer loop count
; begin the outer loop

push ecx ; save outer loop count
mov ecx,20 ; set inner loop count

; begin the inner loop

L2 ; repeat the inner loop
pop ecx ; restore outer loop count
loop L1 ; repeat the outer loop

Save and restore registers when they contain important values. PUSH and POP

; display some memory

in previous lecture? It's easy to

Flags:
� PUSHF (push flags) instruction copies the contents of the flag register
� POPF instruction retrieves and loads the
� PUSHFD and POPFD

o push and pop the EFLAGS
General-purpose registers
� PUSHA instruction copies contents of the internal register set, except the segment registers, to

the stack.
o PUSHA (push all) instruction copies the registers to the stack in the following order:

AX, CX, DX, BX, SP, BP, SI, and DI
� PUSHAD pushes the 32-bit general

o order: EAX, ECX, EDX, EBX, ESP, EBP, ESI, EDI
� POPAD pops the same registers
� POPA do the same for 16-bit registers
� Example:

PUSHA
o Requires 16 bytes of stack memory space to
o After all registers are pushed, the contents of the SP register are decremented by 16.
o PUSHA is very useful when the entire register set of 80286 and above must be saved.
o PUSHAD instruction places 32
o PUSHAD requires 32 bytes of stack storage

Related Instructions

) instruction copies the contents of the flag register (FLAGS
retrieves and loads the flag register (FLAGS) from the stack.

EFLAGS register

instruction copies contents of the internal register set, except the segment registers, to

) instruction copies the registers to the stack in the following order:
AX, CX, DX, BX, SP, BP, SI, and DI.

bit general-purpose registers on the stack
EAX, ECX, EDX, EBX, ESP, EBP, ESI, EDI

pops the same registers (32-bit general-purpose registers) off the stack in reverse order
bit registers

16 bytes of stack memory space to store all eight 16-bit registers
After all registers are pushed, the contents of the SP register are decremented by 16.
PUSHA is very useful when the entire register set of 80286 and above must be saved.
PUSHAD instruction places 32-bit register set on the stack in 80386

D requires 32 bytes of stack storage

FLAGS) to the stack.
) from the stack.

instruction copies contents of the internal register set, except the segment registers, to

) instruction copies the registers to the stack in the following order:

off the stack in reverse order

bit registers.
After all registers are pushed, the contents of the SP register are decremented by 16.
PUSHA is very useful when the entire register set of 80286 and above must be saved.

bit register set on the stack in 80386 - Core2.

Example: Reversing a String
� Use a loop with indexed addressing
� Push each character on the stack
� Start at the beginning of the string, pop the stack in reverse order, insert each character back

into the string

Programming Example
TITLE Reversing a String (RevStr.asm)
; This program reverses a string.
INCLUDE Irvine32.inc
.data
aName BYTE "Abraham Lincoln",0
nameSize = ($ - aName) - 1
.code
main PROC
; Push the name onto the stack.
 mov ecx,nameSize
 mov esi,0
L1: movzx eax,aName[esi] ; get character
 push eax ; push on stack
 inc esi
 loop L1
; Pop the name from the stack, in reverse,
; and store in the aName array.
 mov ecx,nameSize
 mov esi,0
L2: pop eax ; get character
 mov aName[esi],al ; store in string
 inc esi
 loop L2
; Display the name.
 mov edx,OFFSET aName
 call Writestring
 call Crlf
 exit
main ENDP
END main

Q: Why must each character be put in EAX before it is pushed?

Because only word (16-bit) or double word (32-bit) values can be pushed on the stack.

